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Abstract—Haptic Illusions (HIs) have emerged as a versatile
method to enrich haptic experiences for computing systems,
especially in virtual reality scenarios. Unlike traditional haptic
rendering, HIs do not rely on complex hardware. Instead, HIs
leverage multisensory interactions, which can be elicited through
audio-visual channels. However, the intensity at which HIs can
be effectively applied is highly subject-dependent, and typical
measures only estimate generalized boundaries based on small
samples. Consequently, resulting techniques compromise the ex-
perience for some users and fail to fully exploit an HI for others.
We propose adapting HI intensity to the physiological responses
of individual users to optimize their haptic experiences. Specif-
ically, we investigate electroencephalographic (EEG) correlates
associated with the detection of an HI’s manipulations. For this,
we integrated EEG with an established psychophysical protocol.
Our user study (N=32) revealed distinct and separable EEG
markers between detected and undetected HI manipulations. We
identified contrasts in oscillatory activity between the central
and parietal, as well as in frontal regions, as reliable markers
for detection. Further, we trained machine learning models with
simple averaged signals, which demonstrated potential for future
in situ HI detection. These discoveries pave the way for adaptive
HI systems that tailor elicitation to individual and contextual
factors, enabling HIs to produce more convincing and reliable
haptic feedback.

Index Terms—haptic illusions, physiological correlates, elec-
troencephalography, stiffness perception.

I. INTRODUCTION

Haptic perception is fundamental to our ability to explore
and interact with the physical world. However, integrating the
full range of these sensations into computing systems remains
a significant challenge, especially in virtual reality (VR) or
extended reality (XR) environments where free-hand inter-
action is becoming increasingly prevalent. Simulating haptic
properties such as stiffness, texture, and temperature often
requires complex hardware systems, which can limit usability
and scalability [1]. Haptic illusions (HIs) offer an alternative
approach by leveraging the interplay between sensory modali-
ties in shaping a unified perception of our environment [2, 3].
This allows one sensory input, such as vision or audition, to
influence and partially override another, such as our haptic
sense. HIs can exploit the integration of multisensory cues to
modify the perceived haptic properties of objects, including
their shape, size, weight, stiffness, texture, and temperature
(cf. [4]). For example, synchronizing visual displacement and
deformation cues with pressing rigid objects can evoke sensa-
tions of compliance [5, 6]. While effective, the success of HIs
depends on maintaining congruency within specific perceptual
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thresholds; excessive incongruency between sensory inputs
disrupts integration and diminishes the illusion [7]. To mitigate
this issue, HI research primarily relies on psychophysical
experiments to quantify the approximate thresholds for de-
tecting the incongruencies induced by HI [4]. The average
detection thresholds derived from their sample size serve as
rough estimates for the general population [8, 9, 10]. How-
ever, generalized thresholds cannot account for interpersonal
variability, which compromises the experience for some users
and fails to fully exploit the potential of the HI for others.
This necessitates often impractical personalized procedures,
e.g., via many repetitions using staircase methods.

To enhance individual calibrations, in this study, we inves-
tigate the use of physiological signals, specifically electroen-
cephalography (EEG), to identify the detection of HI-induced
incongruencies. EEG has demonstrated sensitivity to a range of
phenomena related to sensory incongruencies [7, 11, 12, 13],
making it a promising tool for identifying when the manipula-
tion of an HI is detected. Using EEG alongside psychophysics
methods, we aim to identify the neural correlates associated
with HI detection and investigate how these could enable HIs
to adapt to variations both within and across individuals.

Our study reveals distinct electrophysiological patterns
for detected and undetected HI-induced incongruencies and
demonstrates that EEG features can differentiate these states.
This enables the development of personalized, adaptive sys-
tems that dynamically adjust HI elicitation based on individual
and contextual factors, enhancing the effectiveness of haptic
experiences.

II. RELATED WORK

This work draws from extensive research in haptic render-
ing, multisensory perception, and physiological measurements.
Below, we provide a concise overview of haptic rendering
techniques, haptic illusions, their perceptual boundaries, and
suitable physiological correlates.

A. Haptic Rendering
Realistic haptic rendering has been identified as one of

the principal challenges for virtual environments [1]. State-
of-the-art systems primarily rely on vibrotactile actuators
embedded in hand-held controllers, which cannot fully satisfy
the large spectrum of haptic properties present in object
interaction [14]. Consequently, research has brought forth
numerous approaches for enabling haptic sensations in XR;
for example, grounded robotic devices, such as the Touch X1,
Omega2, or Falcon [15], render precise forces at high fre-

1https://de.3dsystems.com/haptics-devices/touch-x, accessed: 2025-05-22
2https://www.forcedimension.com/products/omega, accessed: 2025-05-22
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quencies to produce accurate simulations of objects’ kines-
thetic properties. However, integrating these bulky devices in
the environment and forcing users to constantly hold their
end-effectors severely limits the interaction space in which
they may be operated. Grounded and ungrounded encounter-
type systems [16], such as robotic arms [17], have been
proposed to extend the area for haptic rendering. However,
these approaches tend to fall short regarding the precision and
speed necessary to simulate a large variety of sensations while
adding restrictions due to their sizes and energy requirements.
Instead of augmenting the environment, many approaches aim
to provide haptic feedback directly to the user through hand-
held devices [18] or wearables [19], ranging from bulkier
exoskeletons [20] and haptic gloves [21] to finger-mounted
devices [22]. These systems can each produce various hap-
tic sensations, but they necessitate the implementation and
constant carrying of additional hardware and impede natural
object exploration by obstructing skin contact and limiting mo-
bility. While active haptic systems continue to mature, research
increasingly investigates HIs as an alternative that overcomes
the restrictions inherent to hardware-based approaches.

B. Haptic Illusions
When we explore our environment, we rely on the si-

multaneous use of multiple senses, which evoke crossmodal
interactions among them. This process is called multisensory
integration [3]. Sensory illusions, including HIs, occur when
information presented to distinct sensory modalities [3] — or
subsystems within a modality, such as tactile and kinesthetic
channels in haptics [22, 23, 24] — conflicts, causing the
subjective perception to shift towards a percept trying to
combine the conflicting stimuli. While HIs can occur natu-
rally [25], evoking them deliberately has shown great potential
for delivering haptic feedback [4]. By presenting controlled
stimuli during haptic exploration to specific channels, such as
vision or audition, HIs can induce modified haptic perceptions
without necessitating additional haptic devices. This kind of
haptic feedback is often referred to as pseudo-haptics, which
was introduced by Lecuyer et al. [26] who showed that visual
manipulation of spring deformations displayed on a screen
could alter the perceived stiffness of a passive isometric input
device. HIs have since been utilized to alter numerous haptic
properties, including a virtual object’s geometric properties,
such as size and shape, or simulating material characteristics,
such as weight, temperature, surface texture, and stiffness
(refer to Kurzweg et al. [4] for a comprehensive review). They
have been especially prominent in virtual environments, where
the high control over users’ auditory and visual sensations al-
lows for large alterations of haptic experiences. Among them,
we also find many approaches manipulating the proprioception
of one’s limbs using offsets in visual representation, which in
turn has been used to extend the range of haptic experiences
through redirection [27] or used to induce dynamic sensations
of weight [28, 29] or stiffness [30, 8].

C. Perceptual Boundaries of Haptic Illusions
HIs offer many novel opportunities to generate and alter

haptic experiences. However, their nature introduces innate

limitations; while multisensory integration enables the con-
flicting haptic and induced visual or auditory cues to form
a unified percept, it breaks if the incongruities between the
senses become too large [8]. In addition to impacting the
efficacy of the HI, sensory conflicts may lead to discomfort
or contribute to cybersickness [31]. To measure the breaking
points or detection threshold of the induced incongruencies,
research generally relies on population-level approximations
derived from controlled experiments on a small sample of
participants. For instance, Tinguy et al. [10] and Auda et al.
[32] respectively investigated how different a virtual object’s
shape and size can be displayed visually compared to its
physical counterpart. Analogously, many works aim to esti-
mate the perceptual boundaries of hand movement manipu-
lations in mid-air [33, 34] or during haptic exploration, e.g.,
turning a knob [35] or pressing onto a compliant object [8].
These approaches generally follow classical psychophysical
procedures for determining an average detection threshold
of a predefined stimulus [36]. However, in addition to the
effort required to scale these approaches to different HIs or
more users, a single generalized threshold cannot account for
individual interpersonal differences, which can be substantial
in sensitivities to HIs [37, 38]. This either constrains the
intensity of HIs to a very conservatively chosen threshold
or creates noticeable breaks in multisensory integration for
sensitive users.

D. Physiological Correlates to Sensory Incongruencies

Psychophysical methods are effective for determining
thresholds but are impractical for in-situ measurements due to
the need for multiple repetitions before identifying a threshold
(e.g., staircase methods). In contrast, physiological methods,
particularly EEG, can measure neural potentials that are con-
tinuously triggered during the detection process, providing an
alternative and complementary means of identifying sensed
incongruencies. Physiological measurements have become in-
creasingly prevalent in interactive systems, particularly for
VR [39]. Especially, EEG has demonstrated significant po-
tential for capturing transient physiological processes due to
its high temporal resolution, which makes it particularly well-
suited for detecting rapid neural activity changes following
stimulus onset [40, 7].

In the context of evaluating perceived incongruencies in
multisensory cue presentation, prior research has investigated
various correlates of neural processes through EEG or sim-
ilar screening methods. Göschl et al. [41] revealed contrasts
in oscillatory power when participants were presented with
congruent or incongruent visuo-tactile patterns rendered by a
Braille stimulator and presented on a desktop screen. Further,
Alsuradi et al. [42, 12] linked delayed rendering of haptic cues
to changes in oscillatory activity and functional connectivity.
Gehrke et al. [7] investigated temporal incongruencies in vir-
tual object interaction using vibrotactile and electro-muscular
feedback, identifying Prediction-Error Negativity (PEN), a
100–200 ms deflection in Event-Related Potential (ERP), as
a marker of mismatched multisensory cues, including poor
haptic rendering. Similarly, Villa et al. [13] observed PEN
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variations when visually presenting objects as gas, liquid, or
solid while rendering them via mid-air ultrasound, attributing
stronger mismatches for solids to limitations in simulating
rigid kinesthetic feedback. Prediction Error (PE) and its mod-
ulation of cortical activity have additionally been prevalently
studied during visuo-motor tasks, where visual incongruencies
are introduced during cursor or limb movement [43, 44, 45].
Feick et al. [11] recently proposed EEG signals, combined
with heart rate, movement data, and gaze information, to
determine the personalized detection thresholds of hand redi-
rections in virtual environments. They were able to separate
movement amplifications at or above the subjective detection
boundaries from congruent hand movements without visual
manipulations. This signifies that physiological measures can
partially identify inconsistent limb movements in virtual en-
vironments. However, the exploration has so far been limited
to unrestricted mid-air hand movements, leaving the role of
haptic components critical for HIs open for future research.

Overall, these investigations demonstrate the utility of phys-
iological measurements for assessing perceived incongruen-
cies in visuo-haptic rendering, spanning visuo-tactile, visuo-
kinesthetic, and visuo-motor interactions. Yet, the use of EEG
correlates to specifically identify the detection of HIs remains
unexplored. To address this gap, we integrate EEG with an
established psychophysical protocol to uncover electrophys-
iological correlates to the detection of incongruent stimuli
produced by HI manipulations.

III. STUDY DESIGN

To assess EEG correlates to the reported detection of HIs
on a comparative basis, we integrate our measurements to an
established psychometric method for investigating detection
thresholds [36]. Namely, we employ the Method of Constant
Stimuli using a yes-no forced-choice paradigm. We presented
different predefined levels of intensity of an HI and asked par-
ticipants whether their multisensory experience was congruent.

Specifically, we largely replicated a typical setup for stiff-
ness illusions [8, 22, 46]. In the current manuscript, we
implemented a version closer to Weiss et al. [8], as this work
addressed a visuo-haptic phenomenon for which thresholds
have been widely investigated in multiple contexts [28, 33, 34].
While participants are pushing on a virtual object with constant
stiffness in VR, we adjust the displacement movement of their
virtual hand representation compared to their actual physical
hand movements. By increasing or decreasing this movement
ratio (called C/D RATIO), the virtual object can be made to be
perceived as softer or harder, respectively. We record whether
participants noticed this incongruency in hand movements by
asking them the following question: Did the movement of the
virtual hand match the movement of your real hand during
pressing? Participants could only answer with Yes or No.

A. Participants

We recruited 32 participants through university mailing lists.
14 participants described themselves as female, 16 as male,
and two as non-binary. Participants’ age ranged from 20 to
66 (M = 27.47, SD = 8.38). 30 were right-handed, one

left-handed, and one unsure/ambidextrous. 27 participants had
experienced VR before (13 below 2h, 11 between 2h and 20h,
and 3 for more than 20h). All participants had normal or
corrected-to-normal vision and no known conditions affecting
the haptic acuity of the right hand. They were offered 10C
or university course credit as compensation. This study was
approved by our institution’s ethics board.

B. Apparatus

For the physical representation of the virtual object, we
simulated a constant spring stiffness, i.e., applied forces in-
crease linearly with displacement. For this, we employed a
Novint Falcon haptic device [15], rendering appropriate forces
at 1000Hz. We placed the Novint Falcon facing upwards on
a table and connected a flat wooden 9cm×9cm square end-
effector for participants to interact with. We attached a piece
of paper to the surface of the end-effector to ensure a uniform
texture. In the virtual environment, the end-effector is visually
presented as a floating white cuboid with the same dimensions
as its physical counterpart. Positional changes were tracked by
the Novint Falcon and displayed at 90Hz on an HTC VIVE
Pro head-mounted display (HMD). The virtual environment
was constructed in Unity3D3 and ran on a Desktop PC with
an NVIDIA GeForce RTX 3070 graphics card, a 12th Gen
Intel Core i9 processor, and 32GB of RAM. The participant’s
right hand was tracked at 120Hz with an Ultraleap Leap
Motion Controller4 and represented in the virtual environment
by a low-poly model provided by Ultraleap. Participants held
a presenter with two physical buttons in their left hand to
answer the prompted questions. Additionally, we generated
white noise on the HMD headphones to mask environmental
noise or sounds caused by the haptic device. We acquired
EEG signals at 500Hz through a 64-electrode R-Net EEG
system5 from which we utilized 32 electrode channels. To
synchronize the virtual environment and EEG, we employed
the lab streaming layer (LSL) framework6. Figure 1 shows the
setup used in our study.

C. Task

We tasked participants to press down and displace a vir-
tual object by 30mm using the index finger of their right
hand. This virtual object was physically co-located with the
haptic device, rendering a constant spring stiffness of 363
N/m in line with previous investigations [26, 8]. When the
haptic device’s displacement reached the limit of 30mm, the
virtual object turned green, signaling to the participants that
they should remove their pressure. The object bounced back
when participants lessened their applied force, analogous to
a compression spring. We varied the C/D RATIO of the hand
and object displacements during the entire press. After each
press, the participants were prompted with the question: Did
the movement of the virtual hand match the movement of your

3https://unity.com/, last accessed: 2025-05-22
4https://www.ultraleap.com/, last accessed: 2025-05-22
5Brain Products GmbH, Gilching, Germany, https://www.brainproducts.

com/solutions/r-net/, last accessed: 2025-05-22
6https://github.com/sccn/labstreaminglayer, last accessed: 2025-05-22

https://unity.com/
https://www.ultraleap.com/
https://www.brainproducts.com/solutions/r-net/
https://www.brainproducts.com/solutions/r-net/
https://github.com/sccn/labstreaminglayer
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Fig. 1: Experimental setup integrating the EEG system, HTC
Vive, Leap Motion Controller, Novint Falcon, and a wireless
presenter for response input.

real hand during pressing? This question was shown in written
form in front of the participants in the virtual environment.
Beneath the question, we showed the two possible answers of
Yes and No, which participants could select using the buttons
of a wireless presenter they held in their left hand. After the
selection, the next trial was started without feedback regarding
the correctness of their answers.

D. Stimulus

We varied the C/D RATIO of physical to virtual hand
movement as our independent variable. C/D RATIO generally
describes the proportion of input (Control) to output (Display)
movement of a user’s action. While mapping the change in
the virtual representation of users’ movements, one-to-one
is usually desired; prior works show that deliberately break-
ing this congruity can elicit altered sensations. For instance,
Lécuyer et al. [47] simulated bumps and holes on a flat desktop
screen by decreasing and increasing the ratio of physical
mouse movement to visual cursor movement to induce sen-
sations of inclined or declined slopes, respectively. In virtual
environments, this approach is commonly implemented by
altering the ratio of the actual movements of users’ hands and
the respective virtual movements of the hand representations
in VR. Depending on the task and direction of movement,
C/D RATIO adjustments showed to influence various related
sensations, such as the weight of a lifted object [28, 29], the
resistance of a knob being turned [35], kinesthetic forces when
pushing an object [48], and the stiffness of virtual objects
while pressing [8, 30].

As we aim to find electrophysiological correlates to the
reported detection of incogruencies introduced by these HI, we
selected fixed levels of C/D RATIO according to the detection
threshold study conducted by Weiss et al. [8]. We investigated
four levels for each increased and decreased C/D RATIO in
addition to baselines without ratio adjustments. Increased and
decreased values were split into two blocks with a separate

baseline condition. The block for decreased C/D RATIO com-
prised 0×, 0.25×, 0.5×, 0.75× and 1× (baseline) the phys-
ical movement. The increased C/D RATIOs comprised 1×
(baseline), 2×, 3×, 4×, and 5× the actual movement. Each
C/D RATIO was repeated ten times, resulting in 50 trials per
block. The two blocks were presented sequentially, and their
order was counterbalanced among participants. Within each
block, we randomized the trials.

E. Measures

To analyze the populous-level detection threshold using the
established psychometric approach, we recorded participants’
subjective responses (Yes and No) for each level of HI intensity.
Further, using the R-Net EEG device, we recorded continuous
EEG signals of the 32 channels and event markers for the start
and end of the downward and upward phases of each press.

F. Procedure

We first informed participants about the study’s procedure,
apparatus, and aim. After obtaining their written consent,
we asked them to complete a questionnaire regarding their
demographics and previous experiences. Afterward, partici-
pants were seated in front of the study apparatus. Participants
remained seated during the entire setup and experiment to
reduce noise in the EEG data. We adjusted the chair and
table height to position the haptic device’s end-effector 10cm
below the participant’s shoulder height. The experimenter then
attached the EEG system to the participant’s head according
to the international 10-10 electrode placement system. After
ensuring each electrode’s impedance level remained below
50 kΩ, the experimenter assisted the participants in putting
on the VR headset. For each participant, the experimenter
synchronized the virtual and physical positions of the end-
effector using a VIVE Tracker. The participants are initially
introduced to their task by three training trials, showing first
a congruent and then a vastly exaggerated increased and
decreased C/D RATIO to introduce them to the phenomenon
they are tasked to judge. Afterward, the participants entered the
experimental phase and completed all 100 trials sequentially
without breaks. After finishing the study, the experimenter
assisted the participants in taking off the VR headset and EEG.
We provided shampoo, towels, and hairdryers for participants
if they wanted to wash out the remaining saltwater applied
for the EEG system. The overall duration of the experiment,
including briefing and setup, was ∼60 minutes.

G. EEG Preprocessing

We acquired EEG signals of 32 channels (Fp1, Fp2, F9, F7,
F3, Fz, F4, F8, F10, FC5, FC1, FC2, FC6, C3, Cz, C4, T7, T8,
CP5, CP1, CP2, CP6, P9, P7, P3, Pz, P4, P8, P10, O1, Oz,
O2) at 500 Hz. We preprocessed and analyzed the EEG data
using the Python MNE-library [49]. We first re-referenced the
data to the average of all channels and applied a notch filter at
50 Hz to eliminate powerline interference, followed by a high-
pass filter at 0.5 Hz and a low-pass filter at 35 Hz, following
the methods described in previous work [50, 51]. Because we
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Fig. 2: Proportion of reported incongruence of real and virtual hand movements for (a) decreased and (b) increased
C/D RATIO manipulations. The red dotted line describes the detection threshold with a proportion of 0.5. The blue line
describes the fitted psychometric function (Equation 1). For increased C/D RATIO, we additionally plot alternative functions
for descriptive value as yellow (Equation 2) and green (Equation 3) dotted lines.

are mainly interested in the timeframe of the downward press
during which the C/D RATIO manipulations apply increasing
offsets, we calculated the average time participants took to
press the virtual object until the limit of 30mm was reached,
which amounted to ∼720ms. Thus, we segmented the data
into continuous epochs spanning from 200ms before to 720ms
after the start of each press, using the period of -200ms to 0ms
as a baseline. We then conducted an independent component
analysis (ICA) using the fastica algorithm to repair artifacts.
Bad epochs were identified by the Autoreject library [52]
and fed to the ICA algorithm for a robust fit. Afterward, we
ran Autoreject again on the processed data in case of non-
stereotypical artifacts and ran a random sample consensus
(RANSAC) method of spherical splines [53] to detect and
correct possible remaining bad or outlier electrode channels.

IV. RESULTS

In the following, we present the results of our study. We
first provide a psychometric analysis of the yes-no paradigm
to confirm that our replication aligns with previous findings
(subsection IV-A). Next, we report on the EEG preprocessing
(III-G) and analysis, which we separated into an analysis of
general indicators for subjective incogruence (IV-B), followed
by a split analysis based on increased and decreased C/D RA-
TIO, acknowledging these as distinct phenomena (IV-C). We
conduct spatio-temporal and frequency analyses for each.
Finally, we train Random Forest Classifiers on averaged EEG
features to explore their potential for in situ detection of HIs
(IV-D).

A. Psychometric Analysis

To validate our study method and allow for comparison to
existing psychometric investigations of detection thresholds,
we followed the established procedure for analyzing and fitting

psychometric functions for the Method of Constant Stim-
uli [36, 33, 8, 54, 55]. We calculated the average proportion
of reported incongruence for each level of intensity across
repetitions and participants. We then fitted psychometric func-
tions to the proportions separately for two blocks of decreased
and increased C/D RATIO. We fitted a logistic psychometric
function (see [8, 55, 54]) with the following form:

f(x) =
1

1 + eax+b
for a, b ∈ R (1)

Figure 2a and Figure 2b respectively show the fitted psy-
chometric curve for decreased (a = 3.35, b = −1.65) and
increased (a = −0.35, b = 1.30) C/D RATIO as blue
lines. We observe a non-monotonous increase in proportion
of reported incongruence to increased C/D RATIO analogous
to the findings of Weiss et al. [8], where a direct movement
mapping (C/D RATIO = 1) is perceived as less congruent than
particular amplifications of the movement. Thus, we further
fitted the following functions in line with the recommendations
of Weiss et al. [8]:

w(x) = 1−a∗(k
λ
∗(x

λ
)k−1∗e−(x/λ)k) for a, λ, k ∈ R+ (2)

g(x) =
1

1 + eax+b
for a, b ∈ R and x > 1. (3)

Their resulting curves are displayed in Figure 2b as the yellow
(Equation 2, with λ = 4.08, k = 1.08, a = 4.43) and green
(Equation 3, with a = −0.77, b = 2.84) dashed lines. The
detection threshold (DT ) is defined as the stimulus intensity
at which participants detect the stimulus 50% of the time. In
our experiment, the stimulus corresponds to movement manip-
ulations, and the threshold represents the level of movement
amplification that leads to a proportion of reported mismatch
of 0.5. Using Equation 1 results in a DT of 0.49 for decreased
C/D RATIO and 4.76 for increased C/D RATIO (DT = 4.46
for Equation 2, DT = 4.66 for Equation 3).
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Fig. 3: Power distribution across all 32 channels spanning the duration of the press for subjectively congruent (a) and subjectively
incongruent (b) C/D RATIO manipulations, as well as the contrast between them (c).

B. General Correlates to Reported Incongruence

Figure 3 illustrates the power distribution across channels
during our investigated timeframes for all subjectively congru-
ent (Figure 3a) and incongruent (Figure 3b) events, as well as
the contrast between them (Figure 3c). For detected incongru-
encies, we observe decreased potentials in the frontal regions
compared to subjectively congruent events. Conversely, higher
potentials are present in the occipital, parietal, and temporal-
parietal regions towards the end of the event.

a) Finding Activity Regions: To narrow down the spatial
regions of interest, we first conducted a spatio-temporal analy-
sis of the overall electrical potential distributed over channels
and time points, comparing all subjectively congruent and
incongruent events. To account for the multiple comparison
problems in our high-dimensional data, we conducted a non-
parametric cluster-based permutation analysis [56] with F-
tests. We set a significance level of p < .05. The test revealed a
significant difference between the two groups. Figure 4 shows
two main clusters, the first being observed in the right frontal
and frontal polar electrode locations for most of the event’s
duration, while the second is surrounding the central-parietal,
parietal, and occipital areas closer to the end of the press.
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Fig. 4: Primary clusters of differences in activity comparing
undetected and detected C/D RATIO manipulations.

b) Frequency Analysis: To further analyze the differ-
ences in events, we computed time-frequency representations
(TFRs) using complex Morlet wavelets. We focused on the
frequency bands delta (0.5 Hz - 4 Hz, in 20 steps), theta (4 Hz
- 8 Hz, in 20 steps), alpha (8 Hz - 12 Hz, in 20 steps), and beta

(12 Hz - 30 Hz, in 20 steps). For improved time resolution, the
number of cycles was set low at 0.25, 1, 2, and 3 for the delta,
theta, alpha, and beta bands, respectively. We applied baseline
correction (ratio) for each TFR using the -200 ms to 0 ms
window. Again, we conducted a non-parametric cluster-based
permutation analysis [56] to assess the differences between
subjectively congruent and incongruent events within each
band and set the significance threshold to p < .05. In addition
to comparing all identified and unidentified manipulations,
we also analyzed each C/D RATIO level separately, con-
trasting reportedly congruent and incongruent events. This
ensures that the observed activity differences reflect neural
processes related to manipulation identification rather than
visual stimulus changes due to C/D RATIO variations. We
conducted a separate analysis of different spatial regions. Our
report focuses on the regions identified as having the highest
informative value, based on the results of the initial spatio-
temporal analysis.

For the electrodes placed over the frontal lobe (Fz, F3, F4,
F7, F8, F9, F10), we found significant differences between
subjectively congruent and incongruent events for all investi-
gated frequency bands (delta, theta, alpha, beta). Figure 5a
shows the contrast between all subjectively congruent and
incongruent events, with significant clusters highlighted. For
each band, we can observe a significant cluster towards the end
of the press, starting at around 650-700 ms and reaching until
the end of the investigated time frame. For the theta, alpha,
and beta bands, we additionally observe clusters from ∼50-
250 ms after the start of the press. When analyzing individual
C/D RATIO levels, we observed significant differences among
frequency bands for C/D RATIO of 0× (in delta and theta at
∼400 ms), 0.25× (delta, alpha, beta at ∼400 ms), 1× (delta,
theta, alpha at ∼650 ms), 3×(beta at ∼650 ms), and 4× (delta,
theta, alpha at ∼100-400 ms and beta at ∼650 ms).

For the parietal region (Pz, P3, P4, P7, P8), the test showed
a significant difference for all frequency bands. Figure 5b
shows the contrast and significant clusters. In the delta and
theta bands, we observe a significant cluster centered around
∼350-450 ms and another significant cluster beyond ∼650 ms,
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(a) Contrasts in the frontal region (Fz, F3, F4, F7, F8, F9, F10).
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(b) Contrasts in the parietal region (Pz, P3, P4, P7, P8).

Fig. 5: Contrasts between TFRs for all subjectively congruent and incongruent events for electrodes positioned over the frontal
region (a) and parietal region (b). The horizontal axis describes time in seconds, with zero being the onset of the press. Lighter
areas describe larger contrasts, and significant clusters are highlighted in blue, indicating a significantly stronger negative
deflection during reported incongruence.

which is also present in the beta band. Additionally, in the
theta band, we observe an earlier cluster between ∼100-
150 ms to 300 ms that is correspondingly observed in the alpha
band. Separated by levels of C/D RATIO, we found significant
differences at 0.25× manipulations (beta at ∼300 ms) and 3×
manipulations (delta at ∼200 ms, ∼400 ms and ∼650 ms,
theta at ∼200 ms, and beta at ∼200 ms and ∼600 ms).

Similarly, the test revealed significant differences in all
bands over the central-parietal region (CP1, CP2, CP5, CP6)
between the detected and undetected events. We observe two
significant clusters in each band. The first is starting early
∼50-150 ms after stimulus onset and ranging until ∼200-
300 ms. The second can be observed towards the end of
the press with its onset at ∼400 ms for the delta and theta
bands, ∼500 ms in the alpha band, and ∼600 ms in the beta
band. These later clusters are all present until the end of the
investigated time window. C/D RATIO level-based analysis
shows these significant differences to be present for 0.25×
(beta at ∼300 ms), 0.5× (beta at ∼300 ms), 1× (delta &
theta beyond ∼400 ms, alpha & beta beyond ∼600 ms), 3×
(all bands at ∼200 ms, delta additionally beyond ∼600 ms),
and 4× amplifications (all bands beyond ∼600 ms, delta and
theta additionally at ∼100-300 ms).

We found further significant differences among all bands
for electrodes positioned over the occipital lobe (Oz, O1, O2)
and frontal-central area (FC1, FC2, FC5, FC6). We found a
significant difference only in the alpha band for electrodes
over the central and temporal (C3, C4, Cz, T7, T8) regions
and only the delta band for the frontal polar (Fp1, Fp2)
regions. Individual C/D RATIO-level comparisons similarly
exhibit significant contrasts among the occipital (for 0.5×, 1×,
2×, 3×, and 4× C/D RATIO), frontal-central (for 1×, 3×, and
4×), central and temporal (for 3×, and 4×), and frontal polar
region (for 0×, 0.25×, and 4×).

C. Increased & Decreased C/D Ratio

Subsequently, we segmented the data into two blocks: de-
creased and increased C/D RATIO adjustments. This separa-
tion allows us to account for the different phenomena induced
by virtually restricting or amplifying hand movements. We
present the differences in potentials across channels between
reported congruent and incongruent events separately during
decreased and increased C/D RATIO adjustments in Figure 6.

Non-parametric cluster-based tests revealed significant dif-
ferences between events for both the decreased and increased
C/D RATIO. Figure 7a and Figure 7b respectively show
significantly different clusters in the decreased and increased
scenarios. In addition to the significant differences between
subjectively congruent and incongruent events for both groups,
we can observe a clear separation between the restricted
(C/D RATIO < 1) and amplified hand movements (C/D RA-
TIO > 1). The detection of decreased C/D RATIO manipula-
tions resulted in an increased activity largely around the center
and right parietal, occipital, and central-parietal regions, as
well as the centrally located electrodes above the frontal lobe
starting from ∼380 ms. Increased C/D RATIO manipulations
instead exhibited an opposing deflection centered around the
right frontal and frontal polar area starting around ∼120 ms.

a) Decreased C/D Ratio: Focusing solely on the events
where we decreased C/D RATIO, we again computed TFRs for
each frequency band and region using the same decomposition
and subsequent cluster-based analysis. The analysis revealed
significant differences in the beta bands (12-30 Hz) of the
parietal (Pz, P3, P4, P7, P8), central-parietal (CP1, CP2, CP5,
CP6), central (C3, C4, Cz), and frontal region (Fz, F3, F4,
F7, F8, F9, F10), which we present in Figure 8a. For all of
these, we found a significant cluster centered around ∼300 ms,
spanning an area of 50-100 ms in width. Further analyses did
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Fig. 6: Activity contrasts between subjectively congruent and incongruent events for decreased (a) and increased (b) C/D RATIO
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Fig. 7: Main clusters of activity differences between sub-
jectively congruent and incongruent manipulations for de-
creased (a) and increased (b) C/D RATIO respectively.

not reveal any significant differences in any frequency bands
for the occipital (Oz, O1, O2), frontal-central (FC1, FC2, FC5,
FC6), or the frontal polar region (Fp1, Fp2).

b) Increased C/D Ratio: We again computed TFRs for
each frequency band and region using the same decomposition
and subsequent cluster-based analysis for the events where
C/D RATIO was increased.

For the electrodes placed over the frontal lobe (Fz, F3,
F4, F7, F8, F9, F10), we found a significant difference
between subjectively congruent and incongruent events in
all investigated frequency bands (delta, theta, alpha, beta).
Contrasts can be observed in Figure 8b. In each band, we
observe a significant cluster beginning around 20-100 ms and
ending at ∼300 ms after the start of the press. Additionally,
we found another significant cluster in each band emerging
around 650-700 ms. For the delta and theta bands, we found
an additional cluster spanning from ∼300 ms to ∼500 ms.

Similarly, for the electrodes positioned over the frontal-
central area (FC1, FC2, FC5, FC6), we found significant
differences in all bands with large clusters starting right around
the start of the press (∼0 ms). For delta and theta, these
clusters span to ∼500 ms. For alpha and beta, these clusters
stop at ∼300 ms. Additionally, we observe another significant
cluster in all bands starting between 600-670 ms.

Additionally, we found significant differences in all bands
for the central and temporal (C3, C4, Cz, T7, T8), central-
parietal (CP1, CP2, CP5, CP6), parietal (Pz, P3, P4, P7,
P8), and occipital (Oz, O1, O2) regions. For the electrodes
located over the frontal polar region (Fp1, Fp2), we only found
a significant difference in alpha and beta with a significant
cluster observed from ∼100 ms to ∼200-250 ms in both bands
and an additional cluster in beta starting at ∼700ms.

D. Random Forest Classification

The present study primarily aimed to identify EEG corre-
lates of HI detection rather than generating data for machine
learning. However, to explore the potential for in situ classifi-
cation of users’ HI detection, we trained Random Forest (RF)
classifiers on the collected EEG data. We employed simple
averaged EEG features that are independent of precise timing,
which, while potentially reducing model performance, provide
valuable insights into the potential for adaptive systems where
exact event-related measurements are inconsistent.

We first computed the power spectral density (PSD) in each
band and electrode using multitaper spectrum estimation [57].
We then calculated the average PSD (in µV ) across the
entire epoch (0 ms - 720 ms) of each trial. We drop all
information regarding C/D RATIO, participant, or repetition to
train a binary classifier (subjectively congruent or incongruent)
solely on PSD averages. The resulting training matrix contains
3200×160 records. The 3200 rows consist of the 100 trials for
each of the 32 participants. Each row consists of 160 columns
with the averaged PSD for each of the 32 electrodes for all
four bands and a band spanning across all four (Delta: 0.5-
4 Hz, Theta: 4-8 Hz, Alpha: 8-13 Hz, Beta: 13-30 Hz, All:
0.5-30 Hz). We optimized hyperparameters via grid search
and evaluated using 20-fold cross-validation (CV) and 80-20
train-test split. The hyperparameter grid included the number
of trees (100–1000), maximum tree depth (5–30), and mini-
mum samples required to split a node (2–16). During cross-
validation, the average weighted F1-score was used as the
scoring metric to ensure balanced performance across classes.
We ran this grid search on the entire dataset as well as splits
of only increased or decreased C/D RATIO to account for the
detection of these as separate phenomena. Additionally, we
trained RF classifiers with these optimized hyperparameters
applied to each individual participant separately, as well as
with a Leave-One-Participant-Out (LOPO) cross-validation.

We report the performance of the optimal RF models
identified through CV, alongside their corresponding weighted
F1-scores, in Table I. All models performed significantly better
than chance, which corresponds to a weighted F1-score of 0.5.
The results indicate that the model trained exclusively on the
increased C/D RATIO dataset achieved the highest weighted
F1-scores during CV and on the test set, outperforming both
the model trained on the decreased C/D RATIO dataset and the
model trained on the combined dataset. When trained on in-
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(a) Decreased C/D RATIO.
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(b) Increased C/D RATIO

Fig. 8: Contrasts between TFRs for subjectively congruent and incongruent events with decreased C/D RATIO (a) and increased
C/D RATIO (b). (a) shows significant differences in the beta band over four different regions. (b) shows significant differences
in all bands for the frontal region (Fz, F3, F4, F7, F8, F9, F10). Red and blue, respectively, highlight clusters with significantly
stronger positive or negative deflection.

Dataset Optimal
Hyperparameters

20-fold CV
F1-W

Test-Set
F1-W

Individual Training
Mean F1-W (SD)

LOPO
Mean F1-W (SD)

Increased
max depth: 20,
min samples split: 10,
n estimators: 250

0.68 0.73 0.69 (0.21) 0.54 (0.23)

Decreased
max depth: 10,
min samples split: 6,
n estimators: 300

0.66 0.62 0.70 (0.20) 0.47 (0.17)

Combined
max depth: 25,
min samples split: 10,
n estimators: 500

0.65 0.63 0.61 (0.17) 0.52 (0.15)

TABLE I: Comparison of Random Forest models based on Weighted F1-scores (F1-W) during 20-fold cross-validation and on
the test-set. Additionally, this table presents the mean F1-W (and standard deviation) of training these models on individual
participants and using Leave-One-Participant-Out cross-validation.

dividual participants using the same hyperparameters, models
trained separately on the increased and decreased C/D RA-
TIO datasets demonstrated better performance compared to
the combined dataset, suggesting that separate datasets al-
low for better participant-specific generalization. In contrast,
LOPO cross-validation showed reduced performance across
all models. Nonetheless, the model trained on the increased
C/D RATIO dataset consistently achieved the highest weighted
F1-scores in this evaluation setup.

V. DISCUSSION

Our findings reveal distinct spatiotemporal and time-
frequency EEG signatures associated with users’ subjective
detection of the changes introduced by the HI, and we found
that even simple averaged signals can partially separate these
patterns. This suggests promising applications for future in situ
use. In this section, we discuss the validity of our protocol
(subsection V-A) and the insights gained from the combined
(V-B) and individually separated phenomena (V-C). We then
explore potential origins of the observed signatures and their

implications (V-D, V-E, V-F). Finally, we discuss the feasibil-
ity of applying this approach to detect HIs beyond controlled
laboratory settings (V-G) and outline future directions to
expand its potential and address its limitations (V-H).

A. Psychometrics

We designed our study to follow a standard psychometric
approach for finding detection thresholds, ensuring the validity
of our measurements. Our analysis showed expected patterns
consistent with previous HI research. In line with the findings
of Weiss et al. [8], we found reduced movements to be easier to
detect than increased ones, with thresholds of 0.49 (∼ 2× re-
duction) for decreased and 4.76 for increased ratios. Based on
their given approximation function, these thresholds would al-
low for changes in perceived compliance of -5.5% and +33.8%
respectively. We found participants similarly overestimated
their hand movements with a C/D RATIO amplification of
2× being judged more frequently to be congruent with actual
movements than no manipulation (C/D RATIO = 1). These
effects, absent in studies on mid-air hand redirection without
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haptic feedback [33], can likely be attributed to the resistance
feedback employed [8, 26]. Compared to Weiss et al. [8],
our results showed broader boundaries within which the HI
remained undetected. This may be partially attributed to the
minor differences in study design, such as participants being
seated to reduce EEG noise. Previous studies have consistently
demonstrated significant individual variations in boundaries
for hand redirections [11, 38, 58]. These findings suggest
that the observed discrepancies in psychometric results may
stem from differences in participant samples, underscoring the
importance of addressing these interpersonal deviations.

B. General Indicators of HI Detection

Our findings demonstrate notable activity differences across
multiple brain regions and frequency bands associated with
the perceived detection of the HI induced incongruence com-
pared to non-detection. In the comparison of all subjectively
congruent and incongruent events, regardless of whether the
movement was amplified or restricted, significant differences
emerged, particularly in the parietal, central-parietal, and oc-
cipital regions. Individual comparisons at each C/D RATIO
level confirmed that these differences persist across various
amplifications, suggesting they result from the discrimination
process rather than visual stimulus changes as a confounding
factor. When we examined events separately for amplified and
restricted movements, distinct patterns appeared for each (see
subsection V-C). However, both cases shared similar activity
differences in electrodes within the parietal and central-parietal
regions, as shown in Figure 6, with notable differences in
the beta bands of these areas between events judged to
be congruent and incongruent. This consistency in certain
brain areas and frequency bands suggests that these regions
and bands could serve as reliable indicators for general HI
detection, while also highlighting potential areas of interest
for distinguishing between the effects of restricted versus
amplified hand movements.

C. Signatures of Restricted and Amplified Movement

Previous research [8, 45] has treated restricted and amplified
hand movements as distinct phenomena due to differences
observed in psychometric outcomes. Our findings provide
physiological evidence supporting this distinction, demonstrat-
ing that these two phenomena are perceived through separate
processes. We identified two distinct EEG signatures in the
averaged potentials and time-frequency representations asso-
ciated with detecting increases or decreases in C/D RATIO.
These signatures suggest that separate processes are at play
when hand movements are perceived as either restricted or
amplified, which can, therefore, be examined independently.
In our analysis of subjectively congruent versus subjectively
incongruent events across all C/D RATIO conditions, we
observed two primary clusters of activity differences (see
Figure 4). These clusters are similarly visible when isolating
the main activity contrasts for increased (see Figure 7b) and
decreased (see Figure 7a) movements.

While general markers of HI detection could support
broader applications, addressing these distinct phenomena

separately enhances our ability to fine-tune detection meth-
ods, resulting in better adaptability for specific use cases.
Amplified movements evoke larger, temporally distributed
activity changes, making them detectable with simpler metrics
like averaged PSD values (see subsection IV-D). In con-
trast, restricted movements elicit significant but more transient
changes (see Figure 8a), likely requiring advanced methods to
account for temporal shifts caused by the continuous HI onset.

D. Visuo-Somatosensory Integration

Our findings revealed increased activity in electrodes posi-
tioned over the central to posterior parietal regions, aligning
with prior research identifying these areas as critical for
multisensory integration. Prior work has repeatedly shown the
importance of areas inside the parietal lobe in multisensory
integration. For instance, the primary somatosensory cortex
(SI) [59, 12] and the posterior parietal cortex (PPC) [12, 60]
have consistently been implicated in the integration of visual
and somatosensory information. Although our investigation
relied on EEG data obtained from surface electrodes, the
pronounced activity observed over these regions suggests
measurable differences in multisensory integration during re-
portedly congruent versus incongruent HI manipulations.

The exact mechanisms driving these integration differences
remain to be fully understood. The HI introduces multiple
factors influencing visuo-somatosensory integration, including
tactile and kinesthetic feedback from the haptic device and
proprioceptive changes associated with motor tasks. Com-
parable studies in visuo-tactile stimulation [59, 60], visuo-
kinesthetic feedback [12], and visuo-motor tasks [43] have all
demonstrated significant activity changes in these regions.

Additionally, our results suggest a slight left-hemisphere
dominance in parietal activity, consistent with prior findings
that cortices contralateral to the stimulus location exhibit
heightened activation during somatosensory stimulation [61].
While the visual stimuli were centrally positioned, the haptic
interactions were performed exclusively with the right hand,
accounting for this contralateral activation.

E. Error Processing

We observed significant negative potentials in frontal re-
gions during perceived incongruence, particularly under con-
ditions of amplified hand movements. This aligns with prior
research identifying the frontal cortex as central to error
detection and resolution processes during incongruent cross-
modal stimulation [62, 43, 41, 44]. For instance, Savoie et al.
[43] reported significant negative deflections during visuo-
motor prediction errors in the mid-frontal regions (electrode
positioned on Fz, FC1, FC2) resembling the feedback-related
negativity (FRN). FRN is commonly associated with negative
feedback stimuli signaling an error or loss, which evokes
negative potentials early after stimulus onset originating in
the anterior cingulate cortex (ACC) [63]. Further studies have
shown that visuo-haptic mismatches [7] and hand redirec-
tion [45] evoke similar negative potentials in single electrode
(FCz) ERP analyses, suggesting this activity reflects prediction
error processing resulting from detected mismatches.
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Due to the continuous onset of offset manipulations in our
experiment, temporal dynamics of the observed effects are
more complex to interpret, as these cannot align neatly with
ERPs. We observed significant differences emerging early,
rather than solely at the endpoint of the manipulation, which
may indicate sensitivity to dynamic movement changes rather
than static limb offsets. These early responses indicate a rapid
detection of incongruencies in movement dynamics in active
(haptic) exploration.

F. Body Ownership

Activity differences in the frontal regions, specifically the
premotor cortex, have also been reported in the context of
the Rubber Hand Illusion (RHI) [64, 65]. The classical RHI
revolves around the integration of an artificial (rubber) limb
into one’s own body schema as a result of simultaneous
tactile stimulation of a participant’s real hand and visually
showing congruent stimulation of the artificial hand [66].
It relies on visuo-tactile integration and resolution of the
mismatch of vision and proprioception. This concept forms
the basis of virtual hand illusions present in many virtual
environments, where hand representations are integrated into
the user’s body schema due to congruent prediction and
feedback of hand movements, with [67] or without [68]
tactile stimulation. Previous research on the RHI [64, 65] has
demonstrated increased premotor cortex activity to correlate
with the subjective strength of the ownership illusion. Our
finding of decreased potential during detected hand movement
manipulations may suggest that such manipulations disrupt
this integration, leading to reduced activity in these regions
compared to undetected manipulations. This aligns with the
reported role of perceived visuo-motor congruence in main-
taining body ownership in VR [68, 69].

G. EEG-based HI Detection Beyond Controlled Settings

HIs inherently introduce many confounding factors that
induce substantial noise and artifacts into EEG data due to
the involvement of multiple simultaneous processes. Our study
required, for instance, motor and proprioceptive processing
from pressing the virtual object, the sensory processing of
haptic resistance through the device, visual processing of the
virtual environment, and the multisensory integration of these
cues. Together, these confounding factors complicate the phys-
iological measurement of HI effectiveness or detectability. The
nonetheless significant differences we found during detection
and non-detection highlight the distinct underlying processes
that cause large enough effects to be detectable and separable
with EEG despite the noise. This ability to separate signals
is essential for the potential application of such a system to
detect HIs in real-life contexts, where numerous confounding
factors are naturally present.

Our results demonstrate that even relatively simple Ran-
dom Forest models, trained on a limited dataset due to the
exploratory nature of this study, can achieve a degree of sepa-
rability using basic EEG-derived features, such as average PSD
values. This finding highlights the potential for detecting HIs
in situ and establishes a foundation for further research with

more sophisticated models and larger, purpose-built datasets.
Additionally, our analysis reveals that separating the increased
and decreased C/D RATIO conditions significantly improves
model performance compared to treating these phenomena as
a combined effect. The superior performance of participant-
specific models, combined with the relatively low scores ob-
served in LOPO cross-validation, underscores the importance
of personalized calibration. This result suggests that general-
ized models may be less effective in accommodating individual
variability, emphasizing the need for tailored approaches in
future EEG-based HI detection systems.

H. Limitations & Future Work

We limited our investigation to spatiotemporal and time-
frequency analysis of activity and did not perform an analysis
of ERP. This is primarily due to the continuous onset of manip-
ulation of the employed HI, which does not allow for precisely
determining when participants detected the HI after pressing.
Related research indicates that the resulting signatures likely
exhibit irregular patterns compared to typical ERPs [11]. Fur-
ther, ERPs complicate possible future in situ applications by
requiring precise timings of potentials. Nevertheless, previous
work has shown ERPs to be a qualified indicator of similar
phenomena [7, 38], which could support future approaches
to HI detection wherever exact measurements of transient
changes are reliable.

Moreover, the variability in HIs across elicitation methods
limits the generalizability of findings from a single experi-
mental setup. As such, our analysis is restricted to correlates
within the context of our investigated HI and should serve as
a foundation to inform future research in HI detection and
evaluation. While our method relies on imperceptible manip-
ulations, many elicitation approaches for HIs use noticeable
stimuli, which may induce response biases in typical subjective
measurements. Here, establishing physiological correlates for
a wide range of HIs could help distinguish the objective
signatures caused by the original stimulus from those linked
to the resulting changes in haptic perception.

Further, due to the large number of comparisons when
contrasting events for every individual level of manipulation,
our reporting focused largely on contrasts of aggregated events
to provide a comprehensive overview. We provide all contrasts
in our repository (see section VII).

Lastly, while this study identified strong physiological cor-
relates of the investigated HI, we emphasize that the EEG fea-
tures presented here are intended to complement, not replace,
well-established psychophysical methods — at least until a
more robust physiological foundation is established.

VI. CONCLUSION

Our investigation revealed EEG correlates to be a reliable
indicator for the detection of HIs. Through measurements
employed during a classical psychophysical study, we found
prominent differences in activity during manipulations judged
to be congruent compared to incongruent. Particularly, we
found major differences in activity and oscillatory signatures
above the central and the parietal areas — which comprise
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cortices crucial in multisensory integration — and the frontal
lobe — which may be indicative of error processing. We
trained machine learning models on simple averaged EEG
features, which demonstrated the potential for in situ use of
EEG-based HI detection. These findings enable the future de-
velopment of adaptive HI systems that can adjust HI elicitation
to fit individual and transient contextual factors, consequently
allowing HIs to produce more convincing and robust haptic
rendering without compromising users’ experiences.

VII. OPEN SCIENCE

We provide our project files, collected datasets, analysis
scripts, and analysis results on the Open Science Framework7.
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